Metody numeryczne - Pierwiastki rzeczywiste wielomianów - metoda stycznych - Newtona
Sprawdź aktualną promocję w serwisie allegro - JAVA/Metody numeryczne
treść zadania:
Metoda stycznych (Newtona) znaleźć wszystkie rzeczywiste pierwiastki poniższych równań algebraicznych:
x^5 + x^4 - x^3 - 0.2*x^2 + 3*x + 0.5 = 0
x^6 - 6*x^5 + 3*x^4 + 5*x^3 - 6*x + 2 = 0
x^7 - 2*x^5 - 3*x^3 + 4*x^2 - 5*x + 6 = 0
x^8 - 5*x^7 + 3*x^6 + 8*x^5 - 35*x^4 + 73*x^3 - 6*x^2 + 23*x + 7 = 0
x^9 + 3*x^8 - x^7 + x^6 + 6*x^5 - 7*x^4 + x^3 + x^2 - x + 2 = 0
Podać błędy bezwzględne rozwiązań (|f(x)|) oraz dokładność znalezionych pierwiastków (błąd bezwzględny dwóch ostatnich przybliżeń pierwiastka).
Przykładowe rozwiązanie zadania dla wielomianu x^8 - 5*x^7 + 3*x^6 + 8*x^5 - 35*x^4 + 73*x^3 - 6*x^2 + 23*x + 7 = 0:
Obliczanie pierwiastków wielomianu:
1.0x^8 + -5.0x^7 + 3.0x^6 + 8.0x^5 + -35.0x^4 + 73.0x^3 + -6.0x^2 + 23.0x^1 + 7.0
x[0] = -2.1833226915568296
Błąd rozwiązania: 4.85201212541142E-10
Dokładność: 1.5160761535071288E-10
x[1] = -0.2440592131599001
Błąd rozwiązania: 0.16218081536159623
Dokładność: 0.3772381971071004
x[2] = 2.2664087822610406
Błąd rozwiązania: 1.411901706660501E-10
Dokładność: 4.5709658280657095E-11
x[3] = 4.016776856014426
Błąd rozwiązania: 2.3505908330889724E-10
Dokładność: 1.339772737196654E-10